Identification
Hodge diamond and polyvector parallelogram
1
0 0
0 5 0
0 0 0 0
0 5 0
0 0
1
0 0
0 5 0
0 0 0 0
0 5 0
0 0
1
1
0 5
0 0 13
0 0 0 21
0 0 0
0 0
0
0 5
0 0 13
0 0 0 21
0 0 0
0 0
0
Anticanonical bundle
- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 21
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
Birational geometry
Deformation theory
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{PGL}_2\times\mathbb{G}_{\mathrm{m}}^2$ | 5 | 0 |
Period sequence
Extremal contractions
$\mathbb{P}^1$-bundle over $\mathrm{Bl}_3\mathbb{P}^2$, for the vector bundle $\mathcal{O}_{\mathrm{Bl}_3\mathbb{P}^2}\oplus\mathcal{O}_{\mathrm{Bl}_3\mathbb{P}^2}$.
Semiorthogonal decompositions
A full exceptional collection can be constructed using Orlov's blowup formula.
Alternatively, Kawamata has constructed a full exceptional collection for every smooth projective toric variety.
Structure of quantum cohomology
Zero section description
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^1$
- bundle
- $\mathcal{O}(1,1,0)^{\oplus 2}$
- variety
- $(\mathbb{P}^1)^4$
- bundle
- $\mathcal{O}(1,1,1,0)$
See the big table for more information.
K-stability
- none are K-stable
- every member is K‑polystable
- every member is K‑semistable
Toric geometry
This variety is toric.
It corresponds to ID #15 on grdb.co.uk.