del Pezzo surface: $\mathrm{Bl}_8\mathbb{P}^2$
Identification
del Pezzo surface $\mathrm{Bl}_8\mathbb{P}^2$
- Picard rank
- 9
- $-\mathrm{K}_S^2$
- 1
- alternatives
- sextic surface in $\mathbb{P}(1,1,2,3)$
Hodge diamond
1
0 0
0 9 0
0 0
1
0 0
0 9 0
0 0
1
Anticanonical bundle
- index
- 1
- $\dim\mathrm{H}^0(S,\omega_S^\vee)$
- 2
- $-\mathrm{K}_S$ very ample?
- no, but $-3\mathrm{K}_S$ is
Deformation theory
- number of moduli
- 8
- Bott vanishing
- does not hold
Automorphism groups
type | order | structure |
---|---|---|
I | 144 | |
II | 72 | |
III | 36 | |
IV | 30 | |
V | 24 | |
VI | 24 | |
VII | 24 | |
VIII | 20 | |
IX | 16 | |
X | 12 | |
XI | 12 | |
XII | 12 | |
XIII | 10 | |
XIV | 8 | |
XV | 8 | |
XVI | 8 | |
XVII | 6 | |
XVIII | 6 | |
XIX | 4 | |
XX | 4 | |
XXI | 2 |