Identification
Hodge diamond and polyvector parallelogram
1
0 0
0 2 0
0 0 0 0
0 2 0
0 0
1
0 0
0 2 0
0 0 0 0
0 2 0
0 0
1
1
0 1*
0 0* 14
0 0 0 20
0 0 0
0 0
0
* indicates jumping of $\operatorname{Aut}^0$
its dimension takes on the values 1, 2
0 1*
0 0* 14
0 0 0 20
0 0 0
0 0
0
* indicates jumping of $\operatorname{Aut}^0$
its dimension takes on the values 1, 2
Anticanonical bundle
- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 20
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
Birational geometry
Deformation theory
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{B}$ | 2 | 0 |
$\mathbb{G}_{\mathrm{m}}$ | 1 | 0 |
Period sequence
Extremal contractions
Semiorthogonal decompositions
A full exceptional collection can be constructed using Orlov's blowup formula.
Structure of quantum cohomology
Generic semisimplicity of:
- small quantum cohomology, proved by Ciolli in 2005, see [MR2168069] , using the description of a 1 or 2-curve blowup of $\mathbb{P}^3$ or $Q^3$
Zero section description
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $\operatorname{Gr}(2,4) \times \operatorname{Gr}(2,5)$
- bundle
- $\mathcal{Q}_{\operatorname{Gr}(2,4)} \boxtimes \mathcal{U}_{\operatorname{Gr}(2,5)}^{\vee} \oplus \mathcal{O}(1,0) \oplus \mathcal{O}(0,1)^{\oplus 2}$
- variety
- $\operatorname{Fl}(2,3,5)$
- bundle
- $\mathcal{U}_1^{\vee} \oplus \mathcal{O}(1,0) \oplus \mathcal{O}(0,1)^{\oplus 2}$
See the big table for more information.
K-stability
- none are K-stable
- none are K-polystable
- general member is K‑semistable but there exists one that is not