Fano threefolds with $\rho=2$
ID | $-\mathrm{K}_X^3$ | $\mathrm{h}^{1,2}$ | index | description | blowups | blowdowns | rational | unirational | moduli | $\mathrm{Aut}^0$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2-1 | 4 | 22 | 1 |
blowup of 1-11 in an elliptic curve which is the intersection of two divisors from half the anticanonical linear system |
1-11 | no | ? | 36 | $0$ | |||||||||
2-2 | 6 | 20 | 1 |
double cover of 2-34 with branch locus a $(2,4)$-divisor |
no | yes | 33 | $0$ | ||||||||||
2-3 | 8 | 11 | 1 |
blowup of 1-12 in an elliptic curve which is the intersection of two divisors from half the anticanonical linear system |
1-12 | no | yes | 23 | $0$ | |||||||||
2-4 | 10 | 10 | 1 |
blowup of 1-17 in the intersection of two cubics
|
1-17 | yes | yes | 21 | $0$ | |||||||||
2-5 | 12 | 6 | 1 |
blowup of 1-13 in a plane cubic |
1-13 | no | yes | 16 | $0$ | |||||||||
2-6 | 12 | 9 | 1 |
Verra 3-fold
|
no | yes |
|
$0$ | ||||||||||
2-7 | 14 | 5 | 1 |
blowup of 1-16 in the intersection of two divisors from $|\mathcal{O}_Q(2)|$ |
1-16 | yes | yes | 14 | $0$ | |||||||||
2-8 | 14 | 9 | 1 | no | yes |
|
$0$ | |||||||||||
2-9 | 16 | 5 | 1 |
complete intersection of degree $(1,1)$ and $(2,1)$ in $\mathbb{P}^3\times\mathbb{P}^2$
|
1-17 | yes | yes | 13 | $0$ | |||||||||
2-10 | 16 | 3 | 1 |
blowup of 1-14 in an elliptic curve which is an intersection of 2 hyperplanes |
1-14 | yes | yes | 11 | $0$ | |||||||||
2-11 | 18 | 5 | 1 |
blowup of 1-13 in a line |
1-13 | no | yes | 12 | $0$ | |||||||||
2-12 | 20 | 3 | 1 |
intersection of 3 $(1,1)$-divisors in $\mathbb{P}^3\times\mathbb{P}^3$
|
1-17 | yes | yes | 9 | $0$ | |||||||||
2-13 | 20 | 2 | 1 |
blowup of 1-16 in a curve of degree 6 and genus 2 |
1-16 | yes | yes | 8 | $0$ | |||||||||
2-14 | 20 | 1 | 1 |
blowup of 1-15 in an elliptic curve which is an intersection of 2 hyperplanes |
1-15 | yes | yes | 7 | $0$ | |||||||||
2-15 | 22 | 4 | 1 | 1-17 | yes | yes |
|
$0$ | ||||||||||
2-16 | 22 | 2 | 1 |
blowup of 1-14 in a conic |
1-14 | yes | yes | 7 | $0$ | |||||||||
2-17 | 24 | 1 | 1 |
blowup of 1-16 in an elliptic curve of degree 5 |
1-16, 1-17 | yes | yes | 5 | $0$ | |||||||||
2-18 | 24 | 2 | 1 |
double cover of 2-34 with branch locus a divisor of degree $(2,2)$ |
* | yes | yes | 6 | $0$ | |||||||||
2-19 | 26 | 2 | 1 |
blowup of 1-14 in a line |
1-14, 1-17 | yes | yes | 5 | $0$ | |||||||||
2-20 | 26 | 0 | 1 |
blowup of 1-15 in a twisted cubic |
1-15 | yes | yes | 3 |
|
|||||||||
2-21 | 28 | 0 | 1 |
blowup of 1-16 in a twisted quartic |
1-16 | yes | yes | 2 |
|
|||||||||
2-22 | 30 | 0 | 1 |
blowup of 1-15 in a conic |
1-15, 1-17 | yes | yes | 1 |
|
|||||||||
2-23 | 30 | 1 | 1 | 1-16 | yes | yes |
|
$0$ | ||||||||||
2-24 | 30 | 0 | 1 |
divisor on $\mathbb{P}^2\times\mathbb{P}^2$ of bidegree $(1,2)$ |
* | yes | yes | 1 |
|
|||||||||
2-25 | 32 | 1 | 1 |
blowup of 1-17 in an elliptic curve which is an intersection of 2 quadrics
|
* | 1-17 | yes | yes | 1 | $0$ | ||||||||
2-26 | 34 | 0 | 1 |
blowup of 1-15 in a line |
1-15, 1-16 | yes | yes | 0 |
|
|||||||||
2-27 | 38 | 0 | 1 |
blowup of 1-17 in a twisted cubic |
* | 1-17 | yes | yes | 0 | $\mathrm{PGL}_2$ | ||||||||
2-28 | 40 | 1 | 1 |
blowup of 1-17 in a plane cubic |
1-17 | yes | yes | 1 | $\mathbb{G}_{\mathrm{a}}^3\rtimes\mathbb{G}_{\mathrm{m}}$ | |||||||||
2-29 | 40 | 0 | 1 |
blowup of 1-16 in a conic |
* | 1-16 | yes | yes | 0 | $\mathbb{G}_{\mathrm{m}}\times\mathrm{PGL}_2$ | ||||||||
2-30 | 46 | 0 | 1 |
blowup of 1-17 in a conic |
* | 1-17 | yes | yes | 0 | $\mathrm{PSO}_{5;1}$ | ||||||||
2-31 | 46 | 0 | 1 |
blowup of 1-16 in a line |
* | 1-16 | yes | yes | 0 | $\mathrm{PSO}_{5;2}$ | ||||||||
2-32 | 48 | 0 | 2 |
divisor on $\mathbb{P}^2\times\mathbb{P}^2$ of bidegree $(1,1)$
|
* | yes | yes | 0 | $\mathrm{PGL}_3$ | |||||||||
2-33 | 54 | 0 | 1 |
blowup of 1-17 in a line |
* | 1-17 | yes | yes | 0 | $\mathrm{PGL}_{4;2}$ | ||||||||
2-34 | 54 | 0 | 1 |
$\mathbb{P}^1\times\mathbb{P}^2$ |
* | yes | yes | 0 | $\mathrm{PGL}_2\times\mathrm{PGL}_3$ | |||||||||
2-35 | 56 | 0 | 2 |
$\mathrm{Bl}_p\mathbb{P}^3$
|
* | yes | yes | 0 | $\mathrm{PGL}_{4;1}$ | |||||||||
2-36 | 62 | 0 | 1 |
$\mathbb{P}(\mathcal{O}_{\mathbb{P}^2}\oplus\mathcal{O}_{\mathbb{P}^2}(2))$ |
* | yes | yes | 0 | $\mathrm{Aut}(\mathbb{P}(1,1,1,2))$ |