Identification
Hodge diamond and polyvector parallelogram
1
0 0
0 2 0
0 0 0 0
0 2 0
0 0
1
0 0
0 2 0
0 0 0 0
0 2 0
0 0
1
1
0 12
0 0 36
0 0 0 31
0 0 0
0 0
0
0 12
0 0 36
0 0 0 31
0 0 0
0 0
0
Anticanonical bundle
- index
- 2
- del Pezzo of degree 7
- $X\hookrightarrow\mathbb{P}^{8}$
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 31
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
Birational geometry
This variety is rational.
This variety is primitive.
This variety can be blown up (in a curve) to
Deformation theory
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{PGL}_{4;1}$ | 12 | 0 |
Period sequence
Extremal contractions
$\mathbb{P}^1$-bundle over $\mathbb{P}^2$, for the vector bundle $\mathcal{O}_{\mathbb{P}^2}\oplus\mathcal{O}_{\mathbb{P}^2}(1)$.
Semiorthogonal decompositions
A full exceptional collection can be constructed using Orlov's projective bundle formula.
Alternatively, Kawamata has constructed a full exceptional collection for every smooth projective toric variety.
Structure of quantum cohomology
Zero section description
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $\mathbb{P}^2 \times \mathbb{P}^3$
- bundle
- $\mathcal{Q}_{\mathbb{P}^2}(0,1)$
- variety
- $\operatorname{Fl}(1,2,4)$
- bundle
- $\mathcal{Q}_2$
See the big table for more information.
K-stability
- none are K-stable
- none are K-polystable
- none are K-semistable
Toric geometry
This variety is toric.
It corresponds to ID #20 on grdb.co.uk.