Identification
Hodge diamond and polyvector parallelogram
1
0 0
0 3 0
0 0 0 0
0 3 0
0 0
1
0 0
0 3 0
0 0 0 0
0 3 0
0 0
1
1
0 10
0 0 29
0 0 0 28
0 0 0
0 0
0
0 10
0 0 29
0 0 0 28
0 0 0
0 0
0
Anticanonical bundle
- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 28
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
Birational geometry
Deformation theory
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{PGL}_{4;3,1}$ | 10 | 0 |
Period sequence
Extremal contractions
Semiorthogonal decompositions
A full exceptional collection can be constructed using Orlov's blowup formula.
Alternatively, Kawamata has constructed a full exceptional collection for every smooth projective toric variety.
Structure of quantum cohomology
Generic semisimplicity of:
- small quantum cohomology, proved by Iritani in 2007, see [MR2359850] , using toric geometry
Zero section description
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $\mathbb{P}^3 \times \mathbb{P}^2 \times \mathbb{P}^9$
- bundle
- $\mathcal{Q}_{\mathbb{P}^2}(1,0,0) \oplus \mathcal{Q}_{\mathbb{P}^3}(0,0,1) \oplus\Lambda(0,0,1) \oplus \mathcal{O}(0,-1,1)$
See the big table for more information.
K-stability
- none are K-stable
- none are K-polystable
- none are K-semistable
Toric geometry
This variety is toric.
It corresponds to ID #6 on grdb.co.uk.