Fano threefolds with $\rho=3$
ID | $-\mathrm{K}_X^3$ | $\mathrm{h}^{1,2}$ | index | description | blowups | blowdowns | rational | unirational | moduli | $\mathrm{Aut}^0$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3-1 | 12 | 8 | 1 |
double cover of 3-27 with branch locus a divisor of degree $(2,2,2)$ |
no | yes | 17 | $0$ | ||||||||||
3-2 | 14 | 3 | 1 |
divisor from $|\mathcal{L}^{\otimes 2}\otimes\mathcal{O}(2,3)|$ on the $\mathbb{P}^2$-bundle $\mathbb{P}(\mathcal{O}\oplus\mathcal{O}(-1,-1)^{\oplus 2})$ over $\mathbb{P}^1\times\mathbb{P}^1$ such that $X\cap Y$ is irreducible, and $\mathcal{L}$ is the tautological bundle, and $Y\in|\mathcal{L}|$ |
yes | yes | 11 | $0$ | ||||||||||
3-3 | 18 | 3 | 1 |
divisor on $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^2$ of degree $(1,1,2)$ |
2-34 | yes | yes | 9 | $0$ | |||||||||
3-4 | 18 | 2 | 1 |
blowup of 2-18 in a smooth fiber of the composition of the projection to $\mathbb{P}^1\times\mathbb{P}^2$ with the projection to $\mathbb{P}^2$ of the double cover with the projection |
2-18 | yes | yes | 8 | $0$ | |||||||||
3-5 | 20 | 0 | 1 |
blowup of 2-34 in a curve $C$ of degree $(5,2)$ such that $C\hookrightarrow\mathbb{P}^1\times\mathbb{P}^2\to\mathbb{P}^2$ is an embedding |
2-34 | yes | yes | 5 |
|
|||||||||
3-6 | 22 | 1 | 1 |
blowup of 1-17 in the disjoint union of a line and an elliptic curve of degree 4
|
2-25, 2-33 | yes | yes | 5 | $0$ | |||||||||
3-7 | 24 | 1 | 1 |
blowup of 2-32 in an elliptic curve which is the intersection of two divisors from $|-\frac{1}{2}\mathrm{K}_W|$ |
2-32, 2-34 | yes | yes | 4 | $0$ | |||||||||
3-8 | 24 | 0 | 1 |
divisor from the linear system $|(\alpha\circ\pi_1)^*(\mathcal{O}_{\mathbb{P}^2}(1)\otimes\pi_2^*(\mathcal{O}_{\mathbb{P}^2}(2))|$ where $\pi_i\colon\mathrm{Bl}_1\mathbb{P}^2\times\mathbb{P}^2\to\mathrm{Bl}_1\mathbb{P}^2,\mathbb{P}^2$ are the projections, and $\alpha\colon\mathrm{Bl}_1\mathbb{P}^2\to\mathbb{P}^2$ is the blowup |
2-24, 2-34 | yes | yes | 3 |
|
|||||||||
3-9 | 26 | 3 | 1 |
blowup of the cone over the Veronese of $\mathbb{P}^2$ in $\mathbb{P}^5$ with center the disjoint union of the vertex and a quartic curve on $\mathbb{P}^2$ |
2-36 | yes | yes | 6 | $\mathbb{G}_{\mathrm{m}}$ | |||||||||
3-10 | 26 | 0 | 1 |
blowup of 1-16 in the disjoint union of 2 conics
|
2-29 | yes | yes | 2 |
|
|||||||||
3-11 | 28 | 1 | 1 |
blowup of 2-35 in an elliptic curve which is the intersection of two divisors from $|-\frac{1}{2}\mathrm{K}_{V_7}|$ |
2-25, 2-34, 2-35 | yes | yes | 2 | $0$ | |||||||||
3-12 | 28 | 0 | 1 |
blowup of 1-17 in the disjoint union of a line and a twisted cubic |
2-27, 2-33, 2-34 | yes | yes | 1 |
|
|||||||||
3-13 | 30 | 0 | 1 |
blowup of 2-32 in a curve $C$ of bidegree $(2,2)$ such that the composition $C\hookrightarrow W\hookrightarrow\mathbb{P}^2\times\mathbb{P}^2\overset{p_i}{\to}\mathbb{P}^2$ is an embedding for $i=1,2$ |
2-32 | yes | yes | 1 |
|
|||||||||
3-14 | 32 | 1 | 1 |
blowup of 1-17 in the disjoint union of a plane cubic curve and a point outside the plane |
2-35, 2-36 | yes | yes | 1 | $\mathbb{G}_{\mathrm{m}}$ | |||||||||
3-15 | 32 | 0 | 1 |
blowup of 1-16 in the disjoint union of a line and a conic |
2-29, 2-31, 2-34 | yes | yes | 0 | $\mathbb{G}_{\mathrm{m}}$ | |||||||||
3-16 | 34 | 0 | 1 |
blowup of 2-35 in the proper transform of a twisted cubic containing the center of the blowup |
2-27, 2-32, 2-35 | yes | yes | 0 | $\mathrm{B}$ | |||||||||
3-17 | 36 | 0 | 1 |
divisor on $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^2$ of degree $(1,1,1)$ |
* | 2-34 | yes | yes | 0 | $\mathrm{PGL}_2$ | ||||||||
3-18 | 36 | 0 | 1 |
blowup of 1-17 in the disjoint union of a line and a conic |
* | 2-29, 2-30, 2-33 | yes | yes | 0 | $\mathrm{B}\times\mathbb{G}_{\mathrm{m}}$ | ||||||||
3-19 | 38 | 0 | 1 |
blowup of 1-16 in two non-collinear points |
* | 2-35 | yes | yes | 0 | $\mathbb{G}_{\mathrm{m}}\times\mathrm{PGL}_2$ | ||||||||
3-20 | 38 | 0 | 1 |
blowup of 1-16 in the disjoint union of two lines |
2-31, 2-32 | yes | yes | 0 | $\mathbb{G}_{\mathrm{m}}\times\mathrm{PGL}_2$ | |||||||||
3-21 | 38 | 0 | 1 |
blowup of 2-34 in a curve of degree $(2,1)$ |
* | 2-34 | yes | yes | 0 | $\mathbb{G}_{\mathrm{a}}^2\rtimes\mathbb{G}_{\mathrm{m}}^2$ | ||||||||
3-22 | 40 | 0 | 1 |
blowup of 2-34 in a conic on $\{x\}\times\mathbb{P}^2$, $x\in\mathbb{P}^1$ |
2-34, 2-36 | yes | yes | 0 | $\mathrm{B}\times\mathrm{PGL}_2$ | |||||||||
3-23 | 42 | 0 | 1 |
blowup of 2-35 in the proper transform of a conic containing the center of the blowup |
2-30, 2-31, 2-35 | yes | yes | 0 | $\mathbb{G}_{\mathrm{a}}^3\rtimes(\mathrm{B}\times\mathbb{G}_{\mathrm{m}})$ | |||||||||
3-24 | 42 | 0 | 1 |
the fiber product of 2-32 with $\mathrm{Bl}_p\mathbb{P}^2$ over $\mathbb{P}^2$
|
* | 2-32, 2-34 | yes | yes | 0 | $\mathrm{PGL}_{3;1}$ | ||||||||
3-25 | 44 | 0 | 1 |
blowup of 1-17 in the disjoint union of two lines
|
* | 2-33 | yes | yes | 0 | $\mathrm{PGL}_{(2,2)}$ | ||||||||
3-26 | 46 | 0 | 1 |
blowup of 1-17 in the disjoint union of a point and a line
|
* | 2-34, 2-35 | yes | yes | 0 | $\mathbb{G}_{\mathrm{a}}^3\rtimes(\mathrm{GL}_2\times\mathbb{G}_{\mathrm{m}})$ | ||||||||
3-27 | 48 | 0 | 2 |
$\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1$ |
* | yes | yes | 0 | $\mathrm{PGL}_2^3$ | |||||||||
3-28 | 48 | 0 | 1 |
$\mathbb{P}^1\times\mathrm{Bl}_p\mathbb{P}^2$ |
* | 2-34 | yes | yes | 0 | $\mathrm{PGL}_2\times\mathrm{PGL}_{3;1}$ | ||||||||
3-29 | 50 | 0 | 1 |
blowup of 2-35 in a line on the exceptional divisor |
2-35 | yes | yes | 0 | $\mathrm{PGL}_{4;3,1}$ | |||||||||
3-30 | 50 | 0 | 1 |
blowup of 2-35 in the proper transform of a line containing the center of the blowup
|
* | 2-33, 2-35 | yes | yes | 0 | $\mathrm{PGL}_{4;2,1}$ | ||||||||
3-31 | 52 | 0 | 1 |
blowup of the cone over a smooth quadric in $\mathbb{P}^3$ in the vertex
|
* | yes | yes | 0 | $\mathrm{PSO}_{6;1}$ |