Identification
Hodge diamond and polyvector parallelogram
1
0 0
0 3 0
0 0 0 0
0 3 0
0 0
1
0 0
0 3 0
0 0 0 0
0 3 0
0 0
1
1
0 3
0 0 15
0 0 0 21
0 0 0
0 0
0
0 3
0 0 15
0 0 0 21
0 0 0
0 0
0
Anticanonical bundle
- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 21
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
Birational geometry
Deformation theory
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{B}\times\mathbb{G}_{\mathrm{m}}$ | 3 | 0 |
Period sequence
Extremal contractions
Semiorthogonal decompositions
A full exceptional collection can be constructed using Orlov's blowup formula.
Structure of quantum cohomology
Generic semisimplicity of:
- small quantum cohomology, proved by Ciolli in 2005, see [MR2168069] , using the description of a 1 or 2-curve blowup of $\mathbb{P}^3$ or $Q^3$
Zero section description
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $\mathbb{P}^1\times \mathbb{P}^3 \times \mathbb{P}^4$
- bundle
- $\mathcal{O}(1,1,0) \oplus \mathcal{O}(0,1,1) \oplus \mathcal{Q}_{\mathbb{P}^3}(0,0,1)$
- variety
- $\mathbb{P}^1 \times \operatorname{Fl}(1,2,5)$
- bundle
- $\mathcal{Q}_2(0;0,0) \oplus \mathcal{O}(0;1,1) \oplus \mathcal{O}(1;0,1)$
See the big table for more information.
K-stability
- none are K-stable
- none are K-polystable
- none are K-semistable