0 0
0 3 0
0 0 0 0
0 3 0
0 0
1
0 9
0 0 27
0 0 0 27
0 0 0
0 0
0
- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 27
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{PGL}_2\times\mathrm{PGL}_{3;1}$ | 9 | 0 |
$\mathbb{P}^1$-bundle over $\mathbb{P}^1\times\mathbb{P}^1$, for the vector bundle $\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}\oplus\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}(0,1)$.
$\mathbb{P}^1$-bundle over $\mathbb{F}_1$, for the vector bundle $\mathcal{O}_{\mathbb{F}_1}\oplus\mathcal{O}_{\mathbb{F}_1}$.
A full exceptional collection can be constructed using Orlov's blowup formula.
Alternatively, Kawamata has constructed a full exceptional collection for every smooth projective toric variety.
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$
- bundle
- $\mathcal{O}(1,0,1)$
See the big table for more information.
- none are K-stable
- none are K-polystable
- none are K-semistable
This variety is toric.
It corresponds to ID #17 on grdb.co.uk.