Identification
Hodge diamond and polyvector parallelogram
1
0 0
0 4 0
0 0 0 0
0 4 0
0 0
1
0 0
0 4 0
0 0 0 0
0 4 0
0 0
1
1
0 4
0 0 14
0 0 0 21
0 0 0
0 0
0
0 4
0 0 14
0 0 0 21
0 0 0
0 0
0
Anticanonical bundle
- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 21
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no
Birational geometry
Deformation theory
- number of moduli
- 0
- Bott vanishing
- holds
$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|
$\mathrm{GL}_2$ | 4 | 0 |
Period sequence
Extremal contractions
Semiorthogonal decompositions
A full exceptional collection can be constructed using Orlov's blowup formula.
Structure of quantum cohomology
Zero section description
Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):
- variety
- $(\mathbb{P}^1)^2 \times (\mathbb{P}^2)^2$
- bundle
- $\mathcal{O}(0,0,1,1) \oplus \mathcal{O}(1,0,1,0) \oplus \mathcal{O}(0,1,0,1)$
- variety
- $(\mathbb{P}^1)^2 \times \operatorname{Fl}(1,2,3)$
- bundle
- $\mathcal{O}(1,0; 1,0) \oplus \mathcal{O}(0,1;0,1)$
See the big table for more information.
K-stability
- none are K-stable
- every member is K‑polystable
- every member is K‑semistable