Fanography

A tool to visually study the geography of Fano 3-folds.

Identification

Fano variety 4-8

blowup of 3-27 in a curve of degree $(0,1,1)$

Picard rank
4 (others)
$-\mathrm{K}_X^3$
38
$\mathrm{h}^{1,2}(X)$
0
Hodge diamond and polyvector parallelogram
1
0 0
0 4 0
0 0 0 0
0 4 0
0 0
1
1
0 5
0 0 16
0 0 0 22
0 0 0
0 0
0
Anticanonical bundle
index
1
$\dim\mathrm{H}^0(X,\omega_X^\vee)$
22
$-\mathrm{K}_X$ very ample?
yes
$-\mathrm{K}_X$ basepoint free?
yes
hyperelliptic
no
trigonal
no
Birational geometry

This variety is rational.


This variety is the blowup of

  • 3-27, in a curve of genus 0
  • 3-31, in a curve of genus 0
Deformation theory
number of moduli
0
Bott vanishing
holds
$\mathrm{Aut}^0(X)$ $\dim\mathrm{Aut}^0(X)$ number of moduli
$\mathrm{B}\times\mathrm{PGL}_2$ 5 0
Period sequence

The following period sequences are associated to this Fano 3-fold:

GRDB
#54
Fanosearch
#105
Extremal contractions
Semiorthogonal decompositions

A full exceptional collection can be constructed using Orlov's blowup formula.

Structure of quantum cohomology
Zero section description

Fano 3-folds from homogeneous vector bundles over Grassmannians gives the following description(s):

variety
$\mathbb{P}^1 \times \mathbb{P}^3 \times \mathbb{P}^4$
bundle
$\mathcal{O}(1,0,1) \oplus \mathcal{O}(0,2,0) \oplus \mathcal{Q}_{\mathbb{P}^3}(0,0,1)$


variety
$\mathbb{P}^1 \times \operatorname{Fl}(1,2,5)$
bundle
$\mathcal{O}(1;1,0) \oplus \mathcal{O}(0;0,2) \oplus \mathcal{Q}_2$

See the big table for more information.

K-stability
  • none are K-stable
  • none are K-polystable
  • none are K-semistable
See and the big table for more information.