Toric Fano threefolds
ID | $\rho$ | $g$ | index | description |
---|---|---|---|---|
1-17 | 1 | 33 | 4 |
projective space $\mathbb{P}^3$ |
2-36 | 2 | 32 | 1 |
$\mathbb{P}(\mathcal{O}_{\mathbb{P}^2}\oplus\mathcal{O}_{\mathbb{P}^2}(2))$ |
2-35 | 2 | 29 | 2 |
$\mathrm{Bl}_p\mathbb{P}^3$
|
2-33 | 2 | 28 | 1 |
blowup of 1-17 in a line |
2-34 | 2 | 28 | 1 |
$\mathbb{P}^1\times\mathbb{P}^2$ |
3-31 | 3 | 27 | 1 |
blowup of the cone over a smooth quadric in $\mathbb{P}^3$ in the vertex
|
3-29 | 3 | 26 | 1 |
blowup of 2-35 in a line on the exceptional divisor |
3-30 | 3 | 26 | 1 |
blowup of 2-35 in the proper transform of a line containing the center of the blowup
|
3-27 | 3 | 25 | 2 |
$\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1$ |
3-28 | 3 | 25 | 1 |
$\mathbb{P}^1\times\mathrm{Bl}_p\mathbb{P}^2$ |
3-26 | 3 | 24 | 1 |
blowup of 1-17 in the disjoint union of a point and a line
|
3-25 | 3 | 23 | 1 |
blowup of 1-17 in the disjoint union of two lines
|
4-12 | 4 | 24 | 1 |
blowup of 2-33 in the disjoint union of two exceptional lines of the blowup |
4-11 | 4 | 23 | 1 |
blowup of 3-28 in $\{x\}\times E$, $x\in\mathbb{P}^1$ and $E$ the $(-1)$-curve |
4-10 | 4 | 22 | 1 |
$\mathbb{P}^1\times\mathrm{Bl}_2\mathbb{P}^2$ |
4-9 | 4 | 21 | 1 |
blowup of 3-25 in an exceptional curve of the blowup |
5-3 | 5 | 19 | 1 |
$\mathbb{P}^1\times\mathrm{Bl}_3\mathbb{P}^2$ |
5-2 | 5 | 19 | 1 |
blowup of 3-25 in the disjoint union of two exceptional lines on the same irreducible component |